Part Number Hot Search : 
XC3042A 2SC1653 M5231 PCA5097 HD74S157 AMS431AS S32253 150FC
Product Description
Full Text Search
 

To Download APW8819QAI-TYG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . d d r t o t a l p o w e r s o l u t i o n s y n c h r o n o u s b u c k c o n t r o l l e r w i t h 1 . 5 a l d o f e a t u r e s g e n e r a l d e s c r i p t i o n b u c k c o n t r o l l e r ( v d d q ) h i g h i n p u t v o l t a g e s r a n g e f r o m 3 v t o 2 8 v i n p u t p o w e r provide 1.8v (ddr2), 1.5v (ddr3) or adjustable output voltage from 0.5v to 2v - 1% accuracy over-temperature b u i l d i n v r e f v o l t a g e 1 . 8 v 1 % a c c u r a c y o v e r t e m p e r a t u r e i n t e g r a t e d m o s f e t d r i v e r s i n t e g r a t e d b o o t s t r a p f o r w a r d p - c h m o s f e t e x c e l l e n t l i n e a n d l o a d t r a n s i e n t r e s p o n s e s p f m m o d e f o r i n c r e a s e d l i g h t l o a d e f f i c i e n c y s e l e c t a b l e 3 0 0 k h z / 4 0 0 k h z / 5 0 0 k h z s w i t c h i n g f r e q u e b c i e s i n t e g r a t e d m o s f e t d r i v e r s a n d b o o t s t r a p d i o d e s 3 a n d s 5 p i n s c o n t r o l t h e d e v i c e i n s 0 , s 3 , o r s 4 / s 5 s t a t e p o w e r g o o d m o n i t o r i n g 5 0 % u n d e r - v o l t a g e p r o t e c t i o n ( u v p ) 1 2 5 % o v e r - v o l t a g e p r o t e c t i o n ( o v p ) a d j u s t a b l e c u r r e n t - l i m i t p r o t e c t i o n - u s i n g s e n s e l o w - s i d e m o s f e t r d s ( o n ) q f n - 2 0 3 m m x 3 m m p a c k a g e ( q f n - 2 0 ) a n d q f n - 1 6 3 m m x 3 m m t h i n p a c k a g e ( t q f n - 1 6 ) l e a d f r e e a v a i l a b l e ( r o h s c o m p l i a n t ) + 1 . 5 a l d o s e c t i o n ( v t t ) s o u r i n g o r s i n k i n g c u r r e n t u p t o 1 . 5 a f a s t t r a n s i e n t r e s p o n s e f o r o u t p u t v o l t a g e output ceramic capacitors support at least 10 m f mlcc v t t a n d v t t r e f t r a c k a t h a l f t h e v d d q s n s b y i n t e r n a l d i v i d e r 20mv accuracy for vtt and vttref i n d e p e n d e n t o v e r - c u r r e n t - l i m i t ( o c l ) t h e r m a l s h u t d o w n p r o t e c t i o n a p p l i c a t i o n s d d r 2 , a n d d d r 3 m e m o r y p o w e r s u p p l i e s s s t l - 2 s s t l - 1 8 a n d h s t l t e r m i n a t i o n the apw8819 integrates a synchronous buck pwm con- troller to generate vddq, a sourcing and sinking ldo linear regulator to generate vtt. it provides a complete power supply for ddr2 and ddr3 memory system. it offers the lowest total solution cost in system where space is at a premium. the apw8819 provides excellent transient response and accurate dc voltage output in pfm mode. in pulse fre- quency mode (pfm), the apw8819 provides very high ef- ficiency over light to heavy loads with loading-modulated switching frequencies. the apw8819 is equipped with accurate current-limit, output under-voltage, and output over-voltage protections. a power-on- reset function monitors the voltage on vcc prevents wrong operation during power on. the ldo is designed to provide a regulated voltage with bi-directional output current for ddr-sdram termination. the device integrates two power transistors to source or sink current up to 1.5a. it also incorporates current-limit and thermal shutdown protection. an internal resistor divider is used to provide a half volt- age of vddqsns for vttref and vtt voltage. the vtt output voltage is only requiring 20 m f of ceramic output capacitance for stability and fast transient response. the s3 and s5 pins provide the sleep state for vtt (s3 state) and suspend state (s4/s5 state) for device, when s5 and s3 are both pulled low the device provides the soft-off for vtt and vttref.the apw8819 is available in 3mmx3mm 20-pin qfn and 3mmx3mm 16-pin tqfn packages.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 s i m p l i f i e d a p p l i c a t i o n c i r c u i t o r d e r i n g a n d m a r k i n g i n f o r m a t i o n n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 d f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . vtt vddq v in + 3 v ~ 28 v pwm l out q 1 q 2 ddr ldo 5 v r oc vddq / 2 s 3 s 5 vref refin mode r mode r top r gnd apw 8819 handling code tem perature range package code package code qa : qfn - 20 qb : tqfn - 16 temperature range i : - 40 to 85 o c handling code tr : tape & reel ty : tray assembly material g : halogen and lead free device apw 8819 qa : assembly material xxxxx - date code apw 8819 qb : xxxxx - date code apw xxxxx 8819 apw xxxxx 8819
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 3 a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 , 2 ) symbol parameter rating unit v cc vcc supply voltage (vcc to gnd) - 0.3 ~ 7 v v boot boot supply voltage (boot to phase) - 0.3 ~ 7 v v boot - gnd boot supply voltage (boot to gnd) < 20ns pulse width > 20 n s pulse width - 5 ~ 4 2 - 0.3 ~ 35 v ugate voltage (ugate to phase) < 20 n s pulse width > 20 n s pulse width - 5 ~ v boot +0.3 - 0.3 ~ v boot +0.3 v lgate voltage (lgate to gnd) < 20 n s pulse width > 20 n s pulse width - 5 ~ vcc +0.3 - 0.3 ~ vcc +0.3 v phase voltage (phase to gnd) < 20 n s pulse width > 20 n s pulse width - 5 ~ 3 5 - 0.3 ~ 2 8 v pgnd and vttgnd to gnd voltage - 0.3 ~ 0.3 v all other pins ( oc, mode, s3, s5, vddqsns, vttsns, vldoin, vref, pok, vtt, vttref and refin to gnd voltage ) - 0.3 ~ 7 v t j maximum junction temperature 150 o c t stg storage temperature - 65 ~ 150 o c t sdr ma ximum soldering temperature, 10 seconds 260 o c note1: stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recom- mended operating conditions" is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability note 2: the device is esd sensitive. handling precautions are recommended. p i n c o n f i g u r a t i o n = thermal pad ( connected to gnd plane for better heat dissipation ) s 3 1 7 m o d e 1 9 o c 1 8 p o k 2 0 15 boot vtt 3 14 ugate vldoin 2 13 phase 11 lgate vttgnd 4 1 0 p g n d 9 v d d q s n s vttref 5 7 g n d vttsns 1 8 r e f i n 6 v r e f 12 vcc s 5 1 6 s 5 1 3 o c 1 5 s 3 1 4 m o d e 1 6 12 boot vtt 3 11 ugate vldoin 2 10 phase vttref 4 8 l g a t e 6 r e f i n pok 1 7 v d d q s n s 5 v r e f 9 vcc qfn 3 x 3 - 20 ( top view ) tqfn 3 x 3 - 16 ( top view ) gnd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 4 t h e r m a l c h a r a c t e r i s t i c s ( n o t e 3 ) symbol parameter typical value unit q ja thermal resistance - junction to ambient qfn3x3 - 20 tqfn3x3 - 16 95 95 c/w note 3: q ja is measured with the component mounted on a high effective the thermal conductivity test board in free air. the exposed pad of package is soldered directly on the pcb. symbol parameter range unit v cc vcc supply voltage 4.5 ~ 5.5 v v in converter input voltage 3 ~ 28 v v vddq converter output voltage 0. 5 ~2v/ ddr 2 ( 1.8v)/ ddr 3 ( 1.5v) v v vtt ldo output voltage 0.25~ 1 v i out converter output current 0 ~ 20 a i vtt ldo output current - 1.5 ~ +1.5 a c vcc vcc capacitance 1~ m f c vtt vtt output capacitance 10~ m f c vttref vttref output capacitance 0.22 ~ 2.2 m f t a ambient temperature - 40 ~ 85 o c t j junction temperature - 40 ~ 125 o c r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s ( n o t e 4 ) e l e c t r i c a l c h a r a c t e r i s t i c s apw8819 symbol parameter test conditions min . typ . max . unit supply current i vcc vcc supply current t a = 25 o c , v s3 = v s5 = 5v, no load - 1.2 1.5 ma i vccstb vcc stan d by current t a = 25 o c , v s3 = 0v, v s5 = 5v, no load - 740 850 m a i vccsdn vcc shutdow n current t a =25 o c , v s3 = v s5 = 0v, no load - 0.1 1 m a i ldoin ldoin supply current t a = 25 o c , v s3 = v s5 = 5v, no load 0.3 0.6 1 ma i ldoinstb ldoin stan d by current t a = 25 o c , v s3 = 0v, v s5 = 5v, no load - 0.1 10 i ldoinsdn ldoin shutdown current t a = 2 5 o c , v s3 = v s5 = 0v, no load - 0.1 1 m a power - on - reset v cc por threshold v cc rising 4.15 4.3 4.45 v v cc por hysteresis - 100 - m v vtt output i vref =30 m a, t a = 25 o c - 1.8 - v v vref v ref output voltage 0ua ?? i vref ?? 300ua, ta= - 40 o c ~8 5 o c 1.782 - 1.8144 v r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t s . t h e s e s p e c i f i c a t i o n s a p p l y o v e r v v c c = v b o o t = 5 v , v i n = 1 2 v a n d t a = - 4 0 ~ 8 5 c , u n l e s s o t h e r w i s e s p e c i f i e d . t y p i c a l v a l u e s a r e a t t a = 2 5 c .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 5 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apw8819 symbol parameter test conditions min . typ . max . unit vtt output v ldoin = v vddqsns = 1.8v - 0.9 - v vtt vtt output voltage v ldoin = v vddqsns = 1.5v - 0.75 - v v ldoin = v vddqsns = 1.8v, v vddqsns /2 - v vtt , i vtt = 0 a - 20 - 20 v ldoin = v vddqsns = 1.8v, v vddqsns /2 - v vtt , i vtt = 1.5a - 30 - 30 v ldoin = v vddqsns = 1.5v, v vddqsns /2 - v vtt , i vtt = 0a - 20 - 20 v vtt vtt output tolerance v ldoin = v vddqsns = 1.5v, v vddqsns /2 - v vtt , i vtt = 1.5a - 30 - 30 mv sourcing curre nt (v ldoin = 1.8v) 2 2.2 3 sinking current (v ldoin = 1.8v) - 2 - 2.2 - 3 a sourcing current (v ldoin = 1.5v) 2 2.2 3 i lim current - limit sinking current (v ldoin = 1.5v) - 2 - 2.2 - 3 a i vttlk vtt leakage current v vtt = 1.25v, v s3 = 0v, v s5 = 5v, t a = 25 o c - 1.0 - 1.0 m a i vttsnslk vttsns leakage current v vtt = 1.25v, t a = 25 o c - 1.00 0.01 1.00 m a i vttdis vtt discharge current v vtt = 0.5v, v s3 = v s5 = 0v, t a = 25 o c , v vref = 0v - 7.8 - ma v tt ref output v ldoin = v vddqsns = 1.8v, v vddqsns /2 - 0.9 - v vttref vttref output voltage v ldoin = v vddqsns = 1.5v, v vddqsns /2 - 0.75 - v - 10ma < i vttref < 10ma, v vddqsns /2 - v vttref v ldoin = v vttref =1.8v - 18 - +18 vttref tolerance - 10ma < i vttref < 10ma, v vddqsns /2 - v vttref v ldoin = v vddqsns = 1.5v - 15 - +15 mv i vttref vttre f source current v vttref = 0v - 10 - 25 - 40 ma i vttref vttref sink current v vttref = v vddqsns 10 25 40 ma i vttrefdis vttref discharge current t a = 25 o c , s3=s5=0v, v vttref = 0.5v - 2.6 - ma vddq output v vddq vddq output voltage v refin = 1.8v - 1.8 - v vddqsns regulation voltage tolerance to refin t a = 25 o c , v refin = 1.8v, no load - 15 - 15 mv i vddqsns vddqsns input current v vddqsns =1.8v - 12 - m a i refin refin input current v refin =1.8v - 0.1 - 0.1 m a vddq discharge current v s3 = v s5 = 0v, v vddqsns = 0 .5v, mode pin pulled down to gnd through 47 k w (non - tracking) - 12 - ma ldoin discharge current v s3 = v s5 = 0v, v vddqsns = 0.5v, mode pin pulled down to gnd through 100k w (tracking) - 1000 - ma r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t s . t h e s e s p e c i f i c a t i o n s a p p l y o v e r v v c c = v b o o t = 5 v , v i n = 1 2 v a n d t a = - 4 0 ~ 8 5 c , u n l e s s o t h e r w i s e s p e c i f i e d . t y p i c a l v a l u e s a r e a t t a = 2 5 c .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 6 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apw8819 symbol parameter test conditions min . typ . max . unit pwm controllers v in =12v, v vddqsns =1.8v, r mode =100 k w 270 300 330 khz f sw operating frequency v in =12v, v vddqsns =1.8v, r mode =200 k w 360 400 440 khz t ss internal s oft s tart t ime s5 is hig h to v out regulation 0.9 1.2 1.5 ms t off (min) minimum off t ime 350 450 550 ns t on (min) minimum on t ime 80 110 140 ns zero - crossing threshold - 9.5 0.5 10.5 mv vddq protections t a = 25 o c 9 10 11 m a oc pin source current t emperature c oefficient , on t he b asis of 25 o c - 4500 - ppm/ o c ocp comparator offset (v oc ? v pgnd ) ? (v p gnd ? v phase ), v oc ? v pgnd = 60mv - 10 0 +10 mv vddq current limit setting range v oc - v pgnd 0.2 - 3 v vddq ovp trip threshold v vddq rising 120 125 130 % vddq ovp debounce delay v vddq risi ng, dv=10mv - 2 - m s vddq uvp trip threshold v vddq falling 40 50 60 % vddq uvp trip hysteresis - 3 - % vddq uvp debounce - 16 - m s vddq uvp enable delay 2 2.4 2.8 ms pok pok in from lower (pok goes high) 87 90 93 % v pok pok threshold pok ou t from normal (pok goes low) 120 125 130 % i pok p ok leakage current v pok =5v - 0.1 1.0 m a p ok sink current v pok =0.5v 2.5 7.5 - ma pok enable delay time s5 high to pok high 2 2.4 2.8 m s pok delay time delay for pok in - 63 - m s gate drivers ugate pull - up resistance boot - ugate=0.5v - 1.5 3 w ugate sink resistance ugate - phase=0.5v - 0.7 1.8 w lgate pull - up resistance vcc - lgate=0.5v - 1 2.2 w lgate sink resistance lgate - pgnd=0.5v - 0.5 1.2 w u gate to lgate dead time ugate falling to lgate risi ng, no load - 20 - ns lgate to ugate dead time lgate falling to ugate rising, no load - 20 - ns r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t s . t h e s e s p e c i f i c a t i o n s a p p l y o v e r v v c c = v b o o t = 5 v , v i n = 1 2 v a n d t a = - 4 0 ~ 8 5 c , u n l e s s o t h e r w i s e s p e c i f i e d . t y p i c a l v a l u e s a r e a t t a = 2 5 c .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 7 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apw8819 symbol parameter test conditions min . typ . max . unit bootstrap switch v f r on v vcc - v boot , i f = 10ma, t a = 25 o c - 0.5 0.8 v i f reverse leakage v boot = 30v, v phase = 25v, v vcc = 5v, t a = 25 o c - - 0.5 m a logic threshold v ih s3, s5 high thr eshold voltage s3, s5 rising 1.6 - - v v il s3, s5 low threshold voltage s3, s5 falling - - 0.9 v i ileak logic input leakage current v s3 = v s5 = 5v, t a =25 o c - 1 - 1 m a i mode mode source current 14 15 16 m a mode = 0 - - 0. 829 mode = 1 0.879 - 1.202 mode = 2 1.262 - 1.76 mode = 3 1.84 - 1.95 v thmode mode threshold voltage mode = 4 vcc - 1 - - v thermal shutdown t sd thermal shutdown temperature t j rising - 160 - o c thermal shutdown hysteresis - 25 - o c r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t s . t h e s e s p e c i f i c a t i o n s a p p l y o v e r v v c c = v b o o t = 5 v , v i n = 1 2 v a n d t a = - 4 0 ~ 8 5 c , u n l e s s o t h e r w i s e s p e c i f i e d . t y p i c a l v a l u e s a r e a t t a = 2 5 c .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 8 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s junction temperature , t j ( o c ) v refin = 1 . 5 v , vddq = 1 . 5 v v d d q o u t p u t v o l t a g e ( v ) 1 . 48 1 . 52 1 . 51 1 . 49 1 . 50 - 40 - 20 0 20 40 60 80 100 120 junction temperature , t j ( c ) v d d q o u t p u t v o l t a g e ( v ) v refin = 1 . 8 v , vddq = 1 . 8 v 1 . 77 1 . 83 1 . 81 1 . 78 1 . 79 - 40 - 20 0 20 40 60 80 100 120 1 . 8 1 . 82 frequency vs . junction temperature s w i t c h i n g f r e q u e n c y , f s w ( k h z ) junction temperature , t j ( c ) 270 280 290 300 310 320 330 - 40 - 20 0 20 40 60 80 100 120 frequency setting : 300 khz supply current in s 0 state vs . junction temperature junction temperature , t j ( c ) 0 s u p p l y c u r r e n t , i v c c ( m a ) 1 . 6 1 . 2 0 . 4 0 . 8 2 . 0 - 40 - 20 0 20 40 60 80 100 120 s 3 = s 5 = 5 v s h u t d o w n c u r r e n t , i v c c ( u a ) shutdown current vs . junction temperature 1 . 0 0 . 8 0 . 6 0 . 2 0 . 4 0 junction temperature , t j ( c ) - 40 - 20 0 20 40 60 80 100 120 supply current in s 3 state vs . junction temperature s u p p l y c u r r e n t , i v c c ( m a ) junction temperature , t j ( c ) 0 0 . 2 0 . 4 0 . 6 - 40 - 20 0 20 40 60 80 100 120 0 . 8 1 . 0 s 3 = 0 v , s 5 = 5 v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 9 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s junction temperature , t j ( c ) - 40 - 20 0 20 40 60 80 100 120 m o d e s o u r c e c u r r e n t ( u a ) 10 12 14 16 18 20 mode source current vs . junction temperature oc pin sink current vs . junction temperature o c s i n k c u r r e n t ( u a ) junction temperature , t j ( c ) 0 2 4 6 8 10 12 - 40 - 20 0 20 40 60 80 100 120 16 14 18
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 0 o p e r a t i n g w a v e f o r m s ch 1 : v s 5 ( 5 v / div ) ch 2 : v vddq ( 1 v / div ) ch 3 : v vtt ( 500 m v / div ) ch 4 : v pok ( 5 v / div ) time : 500 m s / div s 5 enable , no load ch 1 : v s 5 ( 5 v / div ) ch 2 : v vddq ( 1 v / div ) ch 3 : v ugate ( 20 v / div ) ch 4 : v pok ( 5 v / div ) time : 500 m s / div non - zero vddq s 5 enable s 5 shutdown - tracking discharge ch 1 : v s 5 ( 5 v / div ) ch 2 : v vddq ( 1 v / div ) ch 3 : v vtt ( 500 m v / div ) ch 4 : v vttref ( 500 m v / div ) time : 200 m s / div s 5 shutdown - non - tracking discharge ch 1 : v s 5 ( 5 v / div ) ch 2 : v vddq ( 1 v / div ) ch 3 : v vtt ( 500 m v / div ) ch 4 : v vttref ( 500 m v / div ) time : 5 m s / div
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 1 o p e r a t i n g w a v e f o r m s s 3 enable - shutdown ch 1 : v s 3 ( 5 v / div ) ch 2 : v vddq ( 1 v / div ) ch 3 : v vttref ( 500 m v / div ) ch 4 : v vtt ( 500 m v / div ) time : 10 ms / div load transient , i vddq = 0 a - > 1 2 a - > 0 a ch 1 : v vddq ( 100 m v / div ) ch 2 : v ugate ( 20 v / div ) ch 3 : v lgate ( 5 v / div ) ch 4 : i l ( 10 a / div ) time : 2 0 m s / div ch 1 : v vddq ( 100 m v / div ) ch 2 : v ugate ( 20 v / div ) ch 3 : v lgate ( 5 v / div ) ch 4 : i l ( 10 a / div ) time : 2 0 m s / div load transient , i vddq = 5 a - > 1 7 a - > 5 a current limit then occur uvp ch 1 : v vddq ( 1 v / div ) ch 2 : v vtt ( 500 m v / div ) ch 3 : v phase ( 2 0 v / div ) ch 4 : i l ( 10 a / div ) time : 1 00 m s / div
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 2 o p e r a t i n g w a v e f o r m s ch 1 : v vddq ( 1 v / div ) ch 2 : v vtt ( 500 m v / div ) ch 3 : v phase ( 2 0 v / div ) ch 4 : i l ( 10 a / div ) time : 20 m s / div short circuit test : vddq short to gnd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 3 p i n d e s c r i p t i o n no. qfn - 20 tqfn - 16 name function 1 - vttsns voltage sense input for the vtt ldo. connect to plus terminal of the vtt ldo output capacitor . 2 2 vldoin supply voltage input for the vtt ldo. 3 3 vtt power output for the vtt ldo . 4 - vttgnd power ground output for the vtt ldo. 5 4 vttref vttref buffered reference output. 6 5 vref 1.8v reference output. a recommended capacitor with a value of 0.1uf should be attached to the vref terminal. 7 thermal pad gnd signal ground for the pwm controller and vtt l do. connect to minus terminal of the vtt ldo output capacitor. 8 6 refin reference input for vddq. programmed by the resistor - divider connected between vref and gnd. 9 7 vddqsns vddq reference input for vtt and vttref. power supply for the vttref. discha rge current sinking terminal for vddq non - tracking discharge. output voltage feedback input for vddq output if vddqset pin is connected to vcc or gnd . 10 - pgnd power ground of the lgate low - side mosfet driver. connect the pin to the source of the low - sid e mosfet. also it is current sense comparator positive input terminal and the ground of power good circuit. 11 8 lgate output of the low - side mosfet driver for pwm. connect this pin to gate of the low - side mosfet. swings from pgnd to vcc. 12 9 vcc filter ed 5v power supply input for internal control circuitry. 13 10 phase junction point of the high - side mosfet source, output filter inductor and the low - side mosfet drain. connect this pin to the source of the high - side mosfet. phase serves as the lower su pply rail for the ugate high - side gate driver. 14 11 ugate output of the high - side mosfet driver for pwm. connect this pin to gate of the high - side mosfet. 15 12 boot supply input for the ugate gate driver and an internal level - shift circuit. connect to an external capacitor and diode to create a boosted voltage suitable to drive a logic - level n - channel mosfet. 16 13 s5 s5 signal input. 17 14 s3 s3 signal input. 18 15 oc over - current trip voltage setting input for r ds(on) current sense scheme. conn ect resistor to gnd to set over - current threshold at v oc /8. 19 16 mode discharge mode and switching frequency setting pin. 20 1 pok power - okay output pin. pok is an open drain output used to indicate the status of the output voltage. when vddq output vol tage is within the target range, it is in high state.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 4 b l o c k d i a g r a m boot ugate phase lgate pgnd pwm signal controller 50 % x refin 125 % x refin ov uv oc zc phase ton generator vddqsns s 3 s 5 vtt vttref vldoin vttsns refin refin x 90 % refin x 125 % delay por error comparator vcc 10 u a mode discharge mode selection current limit s 3 , s 5 control logic thermal shutdown soft start current limit 0 . 5 x vddq + 5 / 10 % 0 . 5 x vddq - 5 / 10 % vttgnd pok gnd 0 . 5 x vddq reference 1 . 8 v vref 1 r 7 r vcc 15 u a
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 5 t y p i c a l a p p l i c a t i o n c i r c u i t d d r 3 , 4 0 0 k h z a p p l i c a t i o n c i r c u i t vttsns vttref s 5 s 3 o c p o k m o d e lgate vcc phase ugate boot p g n d v d d q s n s g n d v r e f vldoin vtt vttgnd r e f i n apw 8819 qfn - 20 vddq 1 . 5 v / 20 a c out q 1 q 2 l out c in v in 7 v ~ 25 v 1 m h 330 uf ( 6 m w ) x 2 10 uf x 2 ( mlcc ) c boot 0 . 1 uf c vcc 1 uf r vcc 2 . 2 100 k 10 k , 1 % r gnd 49 k , 1 % c vref 0 . 1 uf 0 . 01 uf c vttref 0 . 1 uf r pok 100 k 47 k vttref vddq / 2 c vtt 10 uf ( mlcc ) vtt c vldoin 10 uf ( mlcc ) vldoin s 3 s 5 apm 4354 apm 4354 5 v r mode r oc c refin r top
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 6 f u n c t i o n d e s c r i p t i o n the apw8819 integrates a synchronous buck pwm con- troller to generate vddq, a sourcing and sinking ldo linear regulator to generate vtt. it provides a complete power supply for ddr2 and ddr3 memory system in 20-pin qfn and 16-pin tqfn packages. user defined output voltage is also possible and can be adjustable from 0.5v to 2v. input voltage range of the pwm converter is 3v to 28v. the converter runs an adaptive on-time pwm operation at high-load condition and automatically re- duces frequency to keep excellent efficiency down to sev- eral ma. the vtt ldo can source and sink up to 1.5a peak cur- rent with only 10 m f ceramic output capacitor. vttref tracks vddq/2 within 1% of vddq. vtt output tracks vttref within 20 mv at no load condition while 40 mv at full load. the ldo input can be separated from vddq and optionally connected to a lower voltage by using vldoin pin. this helps reducing power dissipation in sourcing phase. the apw8819 is fully compatible to jedec ddr2/ddr3 specifications at s3/s5 sleep state (see table 1). when both vtt and vddq are disabled, the part has two options of output discharge function. the tracking discharge mode discharges vddq and vtt outputs through the internal ldo transistors and then vtt output tracks half of vddq voltage during discharge. the non-tracking discharge mode discharges outputs using internal discharge mosfets that are connected to vddqsns and vtt. the current capability of these dis- charge mosfets are limited and discharge occurs more slowly than the tracking discharge. selecting non-dis- charge mode can disable these discharge functions. c o n s t a n t - o n - t i m e p w m c o n t r o l l e r w i t h i n p u t f e e d - f o r - w a r d p o w e r - o n - r e s e t a p o w e r - o n - r e s e t ( p o r ) f u n c t i o n i s d e s i g n e d t o p r e v e n t w r o n g l o g i c c o n t r o l s w h e n t h e v c c v o l t a g e i s l o w . t h e p o r f u n c t i o n c o n t i n u a l l y m o n i t o r s t h e b i a s s u p p l y v o l t - a g e o n t h e v c c p i n i f a t l e a s t o n e o f t h e e n a b l e p i n s i s s e t h i g h . w h e n t h e r i s i n g v c c v o l t a g e r e a c h e s t h e r i s i n g p o r v o l t a g e t h r e s h o l d ( 4 . 3 v t y p i c a l ) , t h e p o r s i g n a l g o e s h i g h a n d t h e c h i p i n i t i a t e s s o f t - s t a r t o p e r a t i o n s . t h e r e i s a l m o s t n o h y s t e r e s i s t o p o r v o l t a g e t h r e s h o l d ( a b o u t 1 0 0 m v t y p i c a l ) . w h e n v c c v o l t a g e d r o p l o w e r t h a n 4 . 2 v ( t y p i c a l ) , t h e p o r d i s a b l e s t h e c h i p . s o f t - s t a r t t h e a p w 8 8 1 9 i n t e g r a t e s d i g i t a l s o f t - s t a r t c i r c u i t s t o r a m p u p t h e o u t p u t v o l t a g e o f t h e c o n v e r t e r t o t h e p r o g r a m m e d r e g u l a t i o n s e t p o i n t a t a p r e d i c t a b l e s l e w r a t e . t h e s l e w r a t e o f o u t p u t v o l t a g e i s i n t e r n a l l y c o n t r o l l e d t o l i m i t t h e i n r u s h c u r r e n t t h r o u g h t h e o u t p u t c a p a c i t o r s d u r i n g s o f t - s t a r t p r o c e s s . t h e f i g u r e 1 s h o w s v d d q s o f t - s t a r t s e q u e n c e . w h e n t h e s 5 p i n i s p u l l e d a b o v e t h e r i s i n g s 5 t h r e s h o l d v o l t a g e , t h e s w i t c h r e g u l a t o r w a i t f o r 4 0 0 m s a n d m o d e s t a t u s i s r e a d i n t h i s p e r i o d . a n d t h e n , t h e d e v i c e i n i t i a t e s a s o f t - s t a r t p r o c e s s t o r a m p u p t h e o u t p u t v o l t a g e . t h e t o t a l s o f t - s t a r t i n t e r v a l i s 1 . 2 m s ( t y p i c a l ) f r o m s 5 g o e s h i g h t o v d d q r a m p s u p t o r e g u l a t i o n a n d i n d e p e n d e n t o f t h e u g a t e s w i t c h i n g f r e q u e n c y . t h e c o n s t a n t o n - t i m e c o n t r o l a r c h i t e c t u r e i s a p s e u d o - f i x e d f r e q u e n c y w i t h i n p u t v o l t a g e f e e d - f o r w a r d . t h i s a r - c h i t e c t u r e r e l i e s o n t h e o u t p u t f i l t e r c a p a c i t o r ? s e f f e c t i v e s e r i e s r e s i s t a n c e ( e s r ) t o a c t a s a c u r r e n t - s e n s e r e s i s t o r , s o t h e o u t p u t r i p p l e v o l t a g e p r o v i d e s t h e p w m r a m p s i g n a l . i n p f m o p e r a t i o n , t h e h i g h - s i d e s w i t c h o n - t i m e c o n t r o l l e d b y t h e o n - t i m e g e n e r a t o r i s d e t e r m i n e d s o l e l y b y a o n e - s h o t w h o s e p u l s e w i d t h i s i n v e r s e l y p r o p o r t i o n a l t o i n p u t v o l t a g e a n d d i r e c t l y p r o p o r t i o n a l t o o u t p u t v o l t a g e . i n p w m o p e r a t i o n , t h e h i g h - s i d e s w i t c h o n - t i m e i s d e t e r - m i n e d b y a s w i t c h i n g f r e q u e n c y c o n t r o l c i r c u i t i n t h e o n - t i m e g e n e r a t o r b l o c k . t h e s w i t c h i n g f r e q u e n c y c o n t r o l c i r c u i t s e n s e s t h e s w i t c h i n g f r e q u e n c y o f t h e h i g h - s i d e s w i t c h a n d k e e p s r e g u l a t i n g i t a t a c o n s t a n t f r e q u e n c y i n p w m m o d e . t h e d e s i g n i m p r o v e s t h e f r e q u e n c y v a r i a - t i o n a n d b e m o r e o u t s t a n d i n g t h a n a c o n v e n t i o n a l c o n - s t a n t o n - t i m e c o n t r o l l e r w h i c h h a s l a r g e s w i t c h i n g f r e - q u e n c y v a r i a t i o n o v e r i n p u t v o l t a g e , o u t p u t c u r r e n t a n d t e m p e r a t u r e . b o t h i n p f m a n d p w m , t h e o n - t i m e g e n e r a t o r , w h i c h s e n s e s i n p u t v o l t a g e o n p h a s e p i n , p r o v i d e s v e r y f a s t o n - t i m e r e s p o n s e t o i n p u t l i n e t r a n s i e n t s . a n o t h e r o n e - s h o t s e t s a m i n i m u m o f f - t i m e ( t y p i c a l : 4 5 0 n s ) . t h e o n - t i m e o n e - s h o t i s t r i g g e r e d i f t h e e r r o r c o m - p a r a t o r i s h i g h , t h e l o w - s i d e s w i t c h c u r r e n t i s b e l o w t h e c u r r e n t - l i m i t t h r e s h o l d , a n d t h e m i n i m u m o f f - t i m e o n e - s h o t h a s t i m e d o u t .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 7 f u n c t i o n d e s c r i p t i o n ( c o n t . ) s o f t - s t a r t ( c o n t . ) during soft-start stage before the pok pin is ready, the under voltage protection is prohibited. the over voltage and current limit protection functions are enabled. if the output capacitor has residue voltage before startup, both low-side and high-side mosfets are in off-state until the internal digital soft start voltage equal the vvddq voltage. this will ensure the output voltage starts from its existing voltage level. the vtt ldo part monitors the output current, both sourc- ing and sinking current, and limits the maximum output current to prevent damages during current overload or short circuit (shorted from vtt to gnd or vldoin) conditions. the vtt ldo provides a soft-start function, using the constant current to charge the output capacitor that gives a rapid and linear output voltage rise. if the load current is above the current limit start-up, the vtt cannot start successfully. apw8819 has an independent counter for each output, but the pok signal indicates only the status of vddq and does not indicate vtt power good externally. f i g u r e 1 . s o f t - s t a r t s e q u e n c e p o w e r - g o o d o u t p u t ( p o k ) pok is an open-drain output and the pok comparator continuously monitors the output voltage. pok is actively held low in shutdown, and standby. u n d e r v o l t a g e p r o t e c t i o n in the process of operation, if a short-circuit occurs, the output voltage will drop quickly. when load current is big- ger than current limit threshold value, the output voltage will fall out of the required regulation range. the under- voltage continually monitors the setting output voltage after 2.4ms of pwm operations to ensure startup. if a load step is strong enough to pull the output voltage lower than the under voltage threshold (50% of normal output voltage), the internal uvp delay counter begins counting. after 16 m s debounce time, the device turns off both high- side and low-side mosefet with latched and starts a soft-stop process to shut down the output gradually. tog- gling vcc power-on-reset signal can only reset it and bring the chip back to operation. o v e r - v o l t a g e p r o t e c t i o n ( o v p ) the feedback voltage should increase over 125% of the reference voltage due to the high-side mosfet failure or for other reasons, and the over voltage protection com- parator designed with a 1.5 m s noise filter will force the low-side mosfet gate driver to be high. this action ac- tively pulls down the output voltage. when the ovp occurs, the pok pin will pull down and latch-off the converter. this ovp scheme only clamps the voltage overshoot, and does not invert the output voltage when otherwise activated with a continuously high output from low-side mosfet driver. it?s a common problem for ovp schemes with a latch. once an over-voltage fault condition is set, toggling vcc power-on-reset signal can only reset it. 1.2ms 2.4ms s5 v vddq v cc v pok when pwm converter?s output voltage is greater than 90% of its target value, the internal open-drain device will be pulled low. after 63 m s debounce time, the pok goes high. when the output voltage vddq outruns 125% of the tar- get voltage, pok signal will be pulled low immediately.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 8 f u n c t i o n d e s c r i p t i o n ( c o n t . ) p w m c o n v e r t e r c u r r e n t - l i m i t the current-limit circuit employs a ?valley? current-sens- ing algorithm (see figure 2). the apw8819 uses the low-side mosfet?s r ds(on) of the synchronous rectifier as a current-sensing element. if the magnitude of the current-sense signal at phase pin is above the current limit threshold, the pwm is not allowed to initiate a new cycle. the actual peak current is greater than the current limit threshold by an amount equals to the inductor ripple current. therefore, the exact current-limit characteristic and maximum load capability are the functions of the sense resistance, inductor value, and input voltage. the pwm controller uses the low-side mosfet?s on- resistance r ds(on) to monitor the current for protection against shortened outputs. the mosfet?s r ds(on) is var- ied by temperature and gate to source voltage, the user should determine the maximum r ds(on) in manufacture?s datasheet. the oc pin can source 10 m a through an external resistor for adjusting current-limit threshold. the voltage at oc pin is equal to 10 m a x r oc . the relationship between the sampled voltage v oc and the current-limit threshold i limit is given by: where r oc is the resistor of current-limit setting threshold. r ds(on) is the low side mosfets conducive resistance. ilimit is the setting current-limit threshold. i limit can be expressed as i out minus half of peak-to-peak inductor current. the pcb layout guidelines should ensure that noise and dc errors do not corrupt the current-sense signals at phase. place the hottest power mosefts as close to the ic as possible for best thermal coupling. when com- bined with the under-voltage protection circuit, this cur- rent-limit method is effective in almost every circumstance. ds(on) limit r i r u 1 x = oc a 0 8 1 f i g u r e 2 . c u r r e n t - l i m i t a l g o r i t h m v t t s i n k / s o u r c e r e g u l a t o r the output voltage at vtt pin tracks the reference voltage applied at vttref pin. two internal n-channel mosfets controlled by separate high bandwidth error amplifiers regulate the output voltage by sourcing current from vldoin pin or sinking current to gnd pin. to prevent two pass transistors from shoot-through, a small voltage off- set is created between the positive inputs of the two error amplifiers. the vtt with fast response feedback loop keeps tracking to the vttref within 40mv at all condi- tions including fast load transient. s 3 , s 5 c o n t r o l in the ddr2/ddr3 memory applications, it is important to keep vddq always higher than vtt/vttref including both start-up and shutdown. the s3 and s5 signals control the vddq, vtt, vttref states and these pins should be connected to slp_s3 and slp_s5 signals respectively. the table1 shows the truth table of the s3 and s5 pins. when both s3 and s5 are above the logic threshold voltage, the vddq, vtt and vttref are turned on at s0 state. when s3 is low and s5 is high, the vddq and vttref are kept on while the vtt voltage is disabled and left high impedance in s3 state. when both s3 and s5 are low, the vddq, vtt and vttref are turned off and discharged to the ground ac- cording to the discharge mode selected by mode pin during s4/s5 state. time i n d u c t o r c u r r e n t 0 i limit i peak i valley
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 1 9 f u n c t i o n d e s c r i p t i o n ( c o n t . ) s 3 , s 5 c o n t r o l ( c o n t . ) table1: the truth table of s3 and s5 pins. state s3 s5 vddq vttref vtt s0 h h 1 1 1 s3 l h 1 1 0 (high - z) s4/5 l l 0 (discharge) 0 (discharge) 0 (discharge) v d d q a n d v t t d i s c h a r g e c o n t r o l a p w 8 8 1 9 d i s c h a r g e s v d d q , v t t r e f a n d v t t o u t p u t s d u r i n g s 3 a n d s 5 a r e b o t h l o w . t h e r e a r e t w o d i f f e r e n t d i s c h a r g e m o d e s . a 1 5 m a c u r r e n t i s s o u r c e d f r o m m o d e p i n a c r o s s r m o d e r e s i s t o r c o n n e c t e d b e t w e e n m o d e p i n t o g n d . t a b l e 2 s h o w s r m o d e v a l u e s , c o r r e s p o n d i n g s w i t c h i n g f r e q u e n c y a n d d i s c h a r g e m o d e c o n f i g u r a t i o n . table 2. mode selection. mode r mode (k w ) f sw (khz) discharge mode 0 47 400 1 68 300 non - tracking 2 100 300 3 200 400 tracking 4 open 500 tracking w h e n i n t r a c k i n g - d i s c h a r g e m o d e , a p w 8 8 1 9 d i s c h a r g e s o u t p u t s t h r o u g h t h e i n t e r n a l v t t r e g u l a t o r t r a n s i s t o r s a n d v t t o u t p u t t r a c k s h a l f o f v d d q v o l t a g e d u r i n g t h i s d i s c h a r g e . n o t e t h a t v d d q d i s c h a r g e c u r r e n t f l o w s v i a v l d o i n t o v t t g n d t h u s v l d o i n m u s t b e c o n n e c t e d t o v d d q o u t p u t i n t h i s m o d e . t h e i n t e r n a l l d o c a n h a n d l e u p t o 1 . 5 a a n d d i s c h a r g e q u i c k l y . a f t e r v d d q i s d i s c h a r g e d d o w n t o 0 . 2 v , t h e i n t e r n a l l d o i s t u r n e d o f f a n d t h e o p - e r a t i o n m o d e i s c h a n g e d t o t h e n o n - t r a c k i n g d i s c h a r g e m o d e . w h e n i n n o n - t r a c k i n g - d i s c h a r g e m o d e , a p w 8 8 1 9 d i s - c h a r g e s o u t p u t s u s i n g i n t e r n a l m o s f e t s t h a t a r e c o n - n e c t e d t o v d d q s n s a n d v t t . t h e c u r r e n t c a p a b i l i t y o f t h e s e m o s f e t s i s l i m i t e d t o d i s c h a r g e s l o w l y . n o t e t h a t v d d q d i s c h a r g e c u r r e n t f l o w s f r o m v d d q s n s t o p g n d i n t h i s m o d e . i n c a s e o f n o d i s c h a r g e m o d e , a p w 8 8 1 9 d o e s n o t d i s c h a r g e o u t p u t c h a r g e a t a l l . t h e r m a l s h u t d o w n a thermal shutdown circuit limits the junction tempera- ture of apw8819. when the junction temperature exceeds +160 o c, pwm converter, vttldo and vttref are shut off, allowing the device to cool down. the regulator regu- lates the output again through initiation of a new soft- start cycle after the junction temperature cools by 25 o c, resulting in a pulsed output during continuous thermal overload conditions. the thermal shutdown designed with a 25 o c hysteresis lowers the average junction tempera- ture during continuous thermal overload conditions, ex- tending life time of the device. for normal operation, device power dissipation should be externally limited so that junction temperatures will not exceed +125 o c.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 0 a p p l i c a t i o n i n f o r m a t i o n o u t p u t v o l t a g e s e l e c t i o n the output vddqsns voltage is defined by refin voltage. the apw8819 provides a 1.8v voltage reference from vref. in normal application circuit, the vref output voltage drive the refin input voltage through a voltage divider circuit. the vddq output range is between 0.75 v and 1.8v, programmed by the resister-divider connected between vref and gnd. for stability operation, connect- ing a few nano farads of capacitance from refin to gnd is necessary. w h e r e f s w i s t h e s w i t c h i n g f r e q u e n c y o f t h e r e g u l a t o r . a l t h o u g h i n c r e a s e t h e i n d u c t o r v a l u e a n d f r e q u e n c y r e d u c e t h e r i p p l e c u r r e n t a n d v o l t a g e , t h e r e i s a t r a d e o f f b e t w e e n t h e i n d u c t o r ? s r i p p l e c u r r e n t a n d t h e r e g u l a t o r l o a d t r a n s i e n t r e s p o n s e t i m e . a s m a l l e r i n d u c t o r w i l l g i v e t h e r e g u l a t o r a f a s t e r l o a d t r a n s i e n t r e s p o n s e a t t h e e x p e n s e o f h i g h e r r i p p l e c u r r e n t . i n c r e a s i n g t h e s w i t c h i n g f r e q u e n c y ( f s w ) a l s o r e d u c e s t h e r i p p l e c u r r e n t a n d v o l t a g e , b u t i t w i l l i n c r e a s e t h e s w i t c h i n g l o s s o f t h e m o s f e t s a n d t h e o u t p u t i n d u c t o r s e l e c t i o n t h e d u t y c y c l e o f a b u c k c o n v e r t e r i s t h e f u n c t i o n o f t h e i n p u t v o l t a g e a n d o u t p u t v o l t a g e . o n c e a n o u t p u t v o l t a g e i s f i x e d , i t c a n b e w r i t t e n a s : in out v v d = in out sw out in ripple v v l f v - v i = o u t p u t c a p a c i t o r s e l e c t i o n o u t p u t v o l t a g e r i p p l e a n d t h e t r a n s i e n t v o l t a g e d e v i a t i o n a r e f a c t o r s t h a t h a v e t o b e t a k e n i n t o c o n s i d e r a t i o n w h e n s e l e c t i n g a n o u t p u t c a p a c i t o r . h i g h e r c a p a c i t o r v a l u e a n d l o w e r e s r r e d u c e t h e o u t p u t r i p p l e a n d t h e l o a d t r a n s i e n t d r o p . t h e r e f o r e , s e l e c t i n g h i g h p e r f o r m a n c e l o w e s r c a p a c i t o r s i s i n - t e n d e d f o r s w i t c h i n g r e g u l a t o r a p p l i c a t i o n s . i n a d d i t i o n t o h i g h f r e q u e n c y n o i s e r e l a t e d m o s f e t t u r n - o n a n d t u r n - o f f , t h e o u t p u t v o l t a g e r i p p l e i n c l u d e s t h e c a p a c i t a n c e v o l t - a g e d r o p a n d e s r v o l t a g e d r o p c a u s e d b y t h e a c p e a k - t o - p e a k c u r r e n t . t h e s e t w o v o l t a g e s c a n b e r e p r e s e n t e d b y : the inductor value determines the inductor ripple current and affects the load transient reponse. higher inductor value reduces the inductor?s ripple current and induces lower output ripple voltage. the ripple current and ripple voltage can be approxminated by: esr ripple esr sw out ripple out c r i v f 8c i v = d = d these two components constitute a large portion of the total output voltage ripple . in some applications, multiple capacitors have to be paralleled to achieve the desired esr value. if the output of the converter has to support an other load with high pulsating current, more capaci- tors are needed in order to reduce th e equivalent esr and s uppress the voltage ripple to a tolerable level. a small decoupling capacitor in parallel for bypassing the noise is also recommended, and the voltage rating of the output capacitors must also be considered. to support a load transient that is faster than the switching frequency, more capacitors have to be used to reduce the voltage excursion during load step change. another aspect of the capacitor selection is that the total ac current going through the capaci tors has to be less than the rated rms current specified on the ca- pacitors to prevent the capacitor from over-heating. i n s o m e t y p e s o f i n d u c t o r s , e s p e c i a l l y c o r e t h a t i s m a d e o f f e r r i t e , t h e r i p p l e c u r r e n t w i l l i n c r e a s e a b r u p t l y w h e n i t s a t u r a t e s . t h i s w i l l b e r e s u l t i n a l a r g e r o u t p u t r i p p l e v o l t a g e . p o w e r d i s s i p a t i o n o f t h e c o n v e r t e r . t h e m a x i m u m r i p p l e c u r r e n t o c c u r s a t t h e m a x i m u m i n p u t v o l t a g e . a g o o d s t a r t i n g p o i n t i s t o c h o o s e t h e r i p p l e c u r r e n t t o b e a p p r o x i m a t e l y 3 0 % o f t h e m a x i m u m o u t p u t c u r r e n t . o n c e t h e i n d u c t a n c e v a l u e h a s b e e n c h o s e n , s e l e c t i n g a n i n d u c t o r i s c a p a b l e o f c a r r y i n g t h e r e q u i r e d p e a k c u r - r e n t w i t h o u t g o i n g i n t o s a t u r a t i o n .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 1 i n p u t c a p a c i t o r s e l e c t i o n t h e i n p u t c a p a c i t o r i s c h o s e n b a s e d o n t h e v o l t a g e r a t i n g a n d t h e r m s c u r r e n t r a t i n g . f o r r e l i a b l e o p e r a t i o n , s e l e c t t h e c a p a c i t o r v o l t a g e r a t i n g t o b e a t l e a s t 1 . 3 t i m e s h i g h e r t h a n t h e m a x i m u m i n p u t v o l t a g e . t h e m a x i m u m r m s c u r r e n t r a t i n g r e q u i r e m e n t i s a p p r o x i m a t e l y i o u t / 2 , w h e r e i o u t i s t h e l o a d c u r r e n t . d u r i n g p o w e r u p , t h e i n p u t c a p a c i - t o r s h a v e t o h a n d l e l a r g e a m o u n t o f s u r g e c u r r e n t . i n l o w - d u t y n o t e b o o k a p p l i a c t i o n s , c e r a m i c c a p a c i t o r s a r e r e m m e n d e d . t h e c a p a c i t o r s m u s t b e c o n n e c t e d b e t w e e n t h e d r a i n o f h i g h - s i d e m o s f e t a n d t h e s o u r c e o f l o w - s i d e m o s f e t w i t h v e r y l o w - i m p e a d a n c e p c b l a y o u t . a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) m o s f e t s e l e c t i o n t h e a p p l i c a t i o n f o r a n o t e b o o k b a t t e r y w i t h a m a x i m u m v o l t a g e o f 2 4 v , a t l e a s t a m i n i m u m 3 0 v m o s f e t s s h o u l d b e u s e d . t h e d e s i g n h a s t o t r a d e o f f t h e g a t e c h a r g e w i t h t h e r ds(on) o f t h e m o s f e t : f o r t h e l o w - s i d e m o s f e t , b e f o r e i t i s t u r n e d o n , t h e b o d y d i o d e h a s b e e n c o n d u c t e d . t h e l o w - s i d e m o s f e t d r i v e r w i l l n o t c h a r g e t h e m i l l e r c a p a c i t o r o f t h i s m o s f e t . i n t h e t u r n i n g o f f p r o c e s s o f t h e l o w - s i d e m o s f e t , t h e l o a d c u r r e n t w i l l s h i f t t o t h e b o d y d i o d e f i r s t . t h e h i g h d v / d t o f t h e p h a s e n o d e v o l t a g e w i l l c h a r g e t h e m i l l e r c a p a c i t o r t h r o u g h t h e l o w - s i d e m o s f e t d r i v e r s i n k i n g c u r r e n t p a t h . t h i s r e s u l t s i n m u c h l e s s s w i t c h i n g l o s s o f t h e l o w - s i d e m o s f e t s . t h e d u t y c y c l e i s o f t e n v e r y s m a l l i n h i g h b a t t e r y v o l t a g e a p p l i c a t i o n s , a n d t h e l o w - s i d e m o s f e t w i l l c o n - d u c t m o s t o f t h e s w i t c h i n g c y c l e ; t h e r e f o r e , t h e r ds(on) o f t h e l o w - s i d e m o s f e t , t h e l e s s t h e p o w e r l o s s . t h e g a t e c h a r g e f o r t h i s m o s f e t i s u s u a l l y a s e c o n d a r y c o n s i d e r a t i o n . t h e h i g h - s i d e m o s f e t d o e s n o t h a v e t h i s z e r o v o l t a g e s w i t c h i n g c o n d i t i o n , a n d b e c a u s e i t c o n d u c t s f o r l e s s t i m e c o m p a r e d t o t h e l o w - s i d e m o s f e t , t h e s w i t c h i n g l o s s t e n d s t o b e d o m i n a n t . p r i o r i t y s h o u l d b e g i v e n t o t h e m o s f e t s w i t h l e s s g a t e c h a r g e , s o t h a t b o t h t h e g a t e d r i v e r l o s s a n d s w i t c h i n g l o s s w i l l b e m i n i m i z e d . t h e s e l e c t i o n o f t h e n - c h a n n e l p o w e r m o s f e t s a r e d e - t e r m i n e d b y t h e r ds(on) , r e v e r s i n g t r a n s f e r c a p a c i t a n c e ( c r s s ) a n d m a x i m u m o u t p u t c u r r e n t r e q u i r e m e n t . t h e l o s s e s i n t h e m o s f e t s h a v e t w o c o m p o n e n t s : c o n d u c - t i o n l o s s a n d t r a n s i t i o n l o s s . f o r t h e h i g h - s i d e a n d l o w - s i d e m o s f e t s , t h e l o s s e s a r e a p p r o x i m a t e l y g i v e n b y t h e f o l l o w i n g e q u a t i o n s : p high-side = i out 2 (1+ tc)(r ds(on) )d + (0.5)( i out )(v in )( t sw )f s w p low-side = i out 2 (1+ tc)(r ds(on) )(1-d) where i out is the load current tc is the temperature dependency of r ds(on) f sw is the switching frequency t sw is the switching interval d is the duty cycle note that both mosfets have conduction losses while the high- side mosfet include s an additional transi - tion loss. t he switching internal, t sw , is the function of the reverse transfer capacitance c rss . the (1+tc) term is to factor in the temperature dependency of the r ds(on) and can be extracted from the ?r ds(on) vs temperature? curve of the power mosfet.. l a y o u t c o n s i d e r a t i o n i n a n y h i g h s w i t c h i n g f r e q u e n c y c o n v e r t e r , a c o r r e c t l a y o u t i s i m p o r t a n t t o e n s u r e p r o p e r o p e r a t i o n o f t h e r e g u l a t o r . w i t h p o w e r d e v i c e s s w i t c h i n g a t h i g h e r f r e q u e n c y , t h e r e s u l t i n g c u r r e n t t r a n s i e n t w i l l c a u s e v o l t a g e s p i k e a c r o s s t h e i n t e r c o n n e c t i n g i m p e d a n c e a n d p a r a s i t i c c i r c u i t e l e m e n t s . a s a n e x a m p l e , c o n s i d e r t h e t u r n - o f f t r a n s i t i o n o f t h e p w m m o s f e t . b e f o r e t u r n - o f f c o n d i t i o n , t h e m o s f e t i s c a r r y i n g t h e f u l l l o a d c u r r e n t . d u r i n g t u r n - o f f , c u r r e n t s t o p s f l o w i n g i n t h e m o s f e t a n d i s f r e e w h e e l i n g b y t h e l o w e r m o s f e t a n d p a r a s i t i c d i o d e . a n y p a r a s i t i c i n d u c t a n c e o f t h e c i r c u i t g e n e r a t e s a l a r g e v o l t a g e s p i k e d u r i n g t h e s w i t c h i n g i n t e r v a l . i n g e n e r a l , u s i n g s h o r t a n d w i d e p r i n t e d c i r c u i t t r a c e s s h o u l d m i n i m i z e i n t e r c o n n e c t - i n g i m p e d a n c e s a n d t h e m a g n i t u d e o f v o l t a g e s p i k e . a n d s i g n a l a n d p o w e r g r o u n d s a r e t o b e k e p t s e p a r a t i n g a n d f i n a l l y c o m b i n e d t o u s e t h e g r o u n d p l a n e c o n s t r u c t i o n o r s i n g l e p o i n t g r o u n d i n g . t h e b e s t t i e - p o i n t b e t w e e n t h e s i g n a l g r o u n d a n d t h e p o w e r g r o u n d i s a t t h e n e g a t i v e s i d e o f t h e o u t p u t c a p a c i t o r o n e a c h c h a n n e l , w h e r e t h e r e i s l e s s n o i s e . n o i s y t r a c e s b e n e a t h t h e i c a r e n o t r e c o m m e n d e d . b e l o w i s a c h e c k l i s t f o r y o u r l a y o u t :
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 2 l a y o u t c o n s i d e r a t i o n ( c o n t . ) a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) k e e p t h e s w i t c h i n g n o d e s ( u g a t e , l g a t e , b o o t , a n d p h a s e ) a w a y f r o m s e n s i t i v e s m a l l s i g n a l n o d e s ( v r e f , r e f i n , v t t r e f , o c , a n d m o d e ) s i n c e t h e s e n o d e s a r e f a s t m o v i n g s i g n a l s . t h e r e f o r e , k e e p t r a c e s t o t h e s e n o d e s a s s h o r t a s p o s s i b l e a n d t h e r e s h o u l d b e n o o t h e r w e a k s i g n a l t r a c e s i n p a r a l l e l w i t h t h e s e s t r a c e s o n a n y l a y e r . t h e s i g n a l s g o i n g t h r o u g h t h e s e s t r a c e s h a v e b o t h h i g h d v / d t a n d h i g h d i / d t , w i t h h i g h p e a k c h a r g i n g a n d d i s c h a r g i n g c u r r e n t . t h e t r a c e s f r o m t h e g a t e d r i v e r s t o t h e m o s f e t s ( u g a t e a n d l g a t e ) s h o u l d b e s h o r t a n d w i d e . p l a c e t h e s o u r c e o f t h e h i g h - s i d e m o s f e t a n d t h e d r a i n o f t h e l o w - s i d e m o s f e t a s c l o s e a s p o s s i b l e . m i n i - m i z i n g t h e i m p e d a n c e w i t h w i d e l a y o u t p l a n e b e t w e e n t h e t w o p a d s r e d u c e s t h e v o l t a g e b o u n c e o f t h e n o d e . d e c o u p l i n g c a p a c i t o r , t h e r e s i s t o r d i v i d e r s , b o o t c a p a c i t o r s , a n d c u r r e n t l i m i t s t e t t i n g r e s i s t o r s h o u l d b e c l o s e t h e i r p i n s . ( f o r e x a m p l e , p l a c e t h e d e c o u p l i n g c e r a m i c c a p a c i t o r n e a r t h e d r a i n o f t h e h i g h - s i d e m o s f e t a s c l o s e a s p o s s i b l e . t h e b u l k c a p a c i t o r s a r e a l s o p l a c e d n e a r t h e d r a i n ) . a n d n e e d t o n o t e d , c o n - n e c t i n g c a p a c i t o r w i t h o c p i n i s f o r b i d d e n . t h e i n p u t c a p a c i t o r s h o u l d b e n e a r t h e d r a i n o f t h e u p p e r m o s f e t ; t h e h i g h q u a l i t y c e r a m i c d e c o u p l i n g c a - p a c i t o r c a n b e p u t c l o s e t o t h e v c c a n d g n d p i n s ; t h e v t t r e f d e c o u p l i n g c a p a c i t o r s h o u l d b e c l o s e t o t h e v t t r e f p i n a n d g n d ; a c a p a c i t o r w i t h a v a l u e o f 0 . 1 m f o r l a r g e r s h o u l d b e c l o s e t o t h e v r e f t e r m i n a l ; t h e r e f i n d e c o u p l i n g c a p a c i t o r s h o u l d b e c l o s e t o t h e r e f i n p i n a n d g n d ; t h e v d d q a n d v t t o u t p u t c a p a c i - t o r s s h o u l d b e l o c a t e d r i g h t a c r o s s t h e i r o u t p u t p i n a s c l a s e a s p o s s i b l e t o t h e p a r t t o m i n i m i z e p a r a s i t i c s . t h e i n p u t c a p a c i t o r g n d s h o u l d b e c l o s e t o t h e o u t p u t c a p a c i t o r g n d a n d t h e l o w e r m o s f e t g n d . t h e d r a i n o f t h e m o s f e t s ( p h a s e n o d e ) s h o u l d b e a l a r g e p l a n e f o r h e a t s i n k i n g . a n d p h a s e p i n t r a c e s a r e a l s o t h e r e t u r n p a t h f o r u g a t e . c o n n e c t t h i s p i n t o t h e c o n v e r t e r ? s u p p e r m o s f e t s o u r c e . t h e p g n d t r a c e s h o u l d b e a s e p a r a t e t r a c e , a n d i n d e p e n d e n t l y g o t o t h e s o u r c e o f t h e l o w - s i d e m o s f e t s f o r c u r r e n t l i m i t a c c u r a c y . t q f n 3 x 3 - 1 6 0 . 4 mm 0 . 2 mm 0 . 5 mm 3 mm * just recommend 0 . 5 mm * 3 mm 1 . 6 6 m m 1 . 66 mm 0 . 17 mm q f n 3 x 3 - 2 0 0 . 5 mm 0 . 24 mm 0 . 508 mm 0 . 162 mm 1 . 66 mm 3 mm * just recommend 3 mm 1 . 6 6 m m 0 . 5 mm * f i g u r e 3 . r e c o m m e n d e d m i n i m u m f o o t p r i n t
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 3 p a c k a g e i n f o r m a t i o n q f n 3 x 3 - 2 0 pin 1 corner d 2 e 2 k l e s y m b o l min . max . 1 . 00 0 . 00 0 . 15 0 . 25 1 . 50 1 . 80 0 . 05 1 . 50 a a 1 b d d 2 e e 2 e l millimeters a 3 0 . 20 ref qfn 3 x 3 - 20 0 . 30 0 . 50 1 . 80 0 . 008 ref min . max . inches 0 . 039 0 . 000 0 . 006 0 . 010 0 . 059 0 . 071 0 . 059 0 . 012 0 . 020 0 . 80 0 . 071 0 . 031 0 . 002 0 . 40 bsc 0 . 016 bsc k 0 . 20 0 . 008 2 . 90 3 . 10 0 . 114 0 . 122 2 . 90 3 . 10 0 . 114 0 . 122 note : 1 . followed from jedec mo - 220 weee d pin 1 e a b a 1 a 3 nx aaa c aaa 0 . 08 0 . 003
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 4 p a c k a g e i n f o r m a t i o n t q f n 3 x 3 - 1 6 d e pin 1 a b a1 a3 d2 e 2 e pin 1 corner k l note : follow jedec mo-220 weed-4. s y m b o l min. max. 0.80 0.00 0.18 0.30 1.50 1.80 0.05 1.50 a a1 b d d2 e e2 e l millimeters a3 0.20 ref tqfn3x3-16 0.30 0.50 1.80 0.008 ref min. max. inches 0.031 0.000 0.007 0.012 0.059 0.071 0.059 0.012 0.020 0.70 0.071 0.028 0.002 0.50 bsc 0.020 bsc k 0.20 0.008 2.90 3.10 0.114 0.122 2.90 3.10 0.114 0.122
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 5 application a h t1 c d d w e1 f 330 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 qfn3x3 - 20 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0. 40 3.30 ? 0.20 3.30 ? 0.20 1.30 ? 0.20 a h t1 c d d w e1 f 330 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tqfn3x3 - 16 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.05 1.5+0.10 - 0.00 1 .5 min. 0.6+0.00 - 0.40 3.30 ? 0.20 3.30 ? 0.20 1.30 ? 0.20 (mm) d e v i c e s p e r u n i t c a r r i e r t a p e & r e e l d i m e n s i o n s package type unit quantity qfn3x3 - 20 tape & reel 3000 tqfn3x3 - 16 tape & reel 3000 a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1 h t1 a d
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 6 t a p i n g d i r e c t i o n i n f o r m a t i o n c l a s s i f i c a t i o n p r o f i l e q f n 3 x 3 - 2 0 & t q f n 3 x 3 - 1 6 user direction of feed
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 7 c l a s s i f i c a t i o n r e f l o w p r o f i l e s profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spec ified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined a s a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ t j =125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a1 15 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma r e l i a b i l i t y t e s t p r o g r a m
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a y , 2 0 1 3 a p w 8 8 1 9 w w w . a n p e c . c o m . t w 2 8 c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan, r.o.c. tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APW8819QAI-TYG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X